Genetic and physiological characterization of the Borrelia burgdorferi ORF BB0374-pfs-metK-luxS operon.

نویسندگان

  • Sean P Riley
  • Tomasz Bykowski
  • Kelly Babb
  • Kate von Lackum
  • Brian Stevenson
چکیده

The Lyme disease spirochaete, Borrelia burgdorferi, produces the LuxS enzyme both in vivo and in vitro; this enzyme catalyses the synthesis of homocysteine and 4,5-dihydroxy-2,3-pentanedione (DPD) from a by-product of methylation reactions. Unlike most bacteria, B. burgdorferi is unable to utilize homocysteine. However, DPD levels alter expression levels of a subset of B. burgdorferi proteins. The present studies demonstrate that a single B. burgdorferi operon encodes both of the enzymes responsible for synthesis of DPD, as well as the enzyme for production of the Lyme spirochaete's only activated-methyl donor and a probable phosphohydrolase. Evidence was found for only a single transcriptional promoter, located 5' of the first gene, which uses the housekeeping sigma(70) subunit for RNA polymerase holoenzyme function. All four genes are co-expressed, and mRNA levels are growth-rate dependent, being produced during the exponential phase. Thus, high metabolic activity is accompanied by increased cellular levels of the only known borrelial methyl donor, enhanced detoxification of methylation by-products, and increased production of DPD. Therefore, production of DPD is directly correlated with cellular metabolism levels, and may thereby function as an extracellular and/or intracellular signal of bacterial health.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of autoinducer 2 by the lyme disease spirochete, Borrelia burgdorferi.

Defining the metabolic capabilities and regulatory mechanisms controlling gene expression is a valuable step in understanding the pathogenic properties of infectious agents such as Borrelia burgdorferi. The present studies demonstrated that B. burgdorferi encodes functional Pfs and LuxS enzymes for the breakdown of toxic products of methylation reactions. Consistent with those observations, B. ...

متن کامل

Decorin-binding protein of Borrelia burgdorferi is encoded within a two-gene operon and is protective in the murine model of Lyme borreliosis.

Isolated outer membranes of Borrelia burgdorferi were used in immunoblotting experiments with sera from immune mice to identify new putative Lyme disease vaccine candidates. One immunoreactive polypeptide migrated on polyacrylamide gels just proximal to outer surface protein C and comigrated with [3H]palmitate-labeled polypeptides. A degenerate oligonucleotide primer based upon internal amino a...

متن کامل

Structure and expression of the FlaA periplasmic flagellar protein of Borrelia burgdorferi.

The spirochete which causes Lyme disease, Borrelia burgdorferi, has many features common to other spirochete species. Outermost is a membrane sheath, and within this sheath are the cell cylinder and periplasmic flagella (PFs). The PFs are subterminally attached to the cell cylinder and overlap in the center of the cell. Most descriptions of the B. burgdorferi flagellar filaments indicate that t...

متن کامل

Expression of a luxS gene is not required for Borrelia burgdorferi infection of mice via needle inoculation.

The luxS gene product is an integral component of LuxS/autoinducer-2 (AI-2) quorum-sensing systems in bacteria. A putative luxS gene was expressed at comparable levels by Borrelia burgdorferi strain 297 cultivated either in vitro or in dialysis membrane chambers implanted in rat peritoneal cavities. Although the borrelial luxS gene functionally complemented a LuxS deficiency in Escherichia coli...

متن کامل

Apparent role for Borrelia burgdorferi LuxS during mammalian infection.

The Lyme disease spirochete, Borrelia burgdorferi, controls protein expression patterns during its tick-mammal infection cycle. Earlier studies demonstrated that B. burgdorferi synthesizes 4,5-dihydroxy-2,3-pentanedione (autoinducer-2 [AI-2]) and responds to AI-2 by measurably changing production of several infection-associated proteins. luxS mutants, which are unable to produce AI-2, exhibit a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Microbiology

دوره 153 Pt 7  شماره 

صفحات  -

تاریخ انتشار 2007